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Conclusions

This paper presents a technique for the prediction ofthe local and effective
behavior of piezoelectric composites with a periodic structure by using the
equations of the linear Toupin's piezoelectricity theory. For the caiculation of
the local and effective coefficients, it is necessary to sorve some periodic
problems on a celr. For laminated composites, these problems are solved
exactly, so the local and effective coeflicients of piezoelectric laminates are
obtained in an explicit form.
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DYNAMIC ANALYSIS OF' ELASTIC STRUCTURES
WITH NONLINEAR INTERACTION POINTS - MOTION LAWS

WITH STEADY AND SLOWLY VARYING AMPLITUDES

Rrunres Bamusxns

Kaunas University of Technology

The paper presents techniques for the analysis of resonant elastic
mechanical structures with nonlinear interactions vibrating with steady or
slow-varying amplitudes. A motion law is expressed as a superposition of
some set of orthogonal periodic functions by employing the weighted
residual techniques. The harmonic balance method is shown to be a
special case of the apprmch. For obtaining the motion law analysis in
terms of slow varying amplitudes the time-averaging techniques are
employed. Wen integrating the averaged equations of motion numeri-
cally, hannonic components at each time station are obtained by means of
the Fourier transformation. The text is supplied with a numerical example.

Introduction

The displacement approach of the finite element method used for both the
continuous mechanical qystems and those with lumped parameters leads to
the uniforrn model equations of motion

Mii +cIt + xu =w(UJt)+n(r), (l)
wherc M,C,K - the matrices of the elastic structure, R(t) - the exciting force
vector, w(U,U) - the nonlinear force vector.

The steady motion laws of elastic structures as well as the transient ones
can be obtained by the direct integration of the equations of motion. If
damping forces are present, transient motions taking place after an exlernal
force is applied to a structure cease after a certain time interval r'. The motion
law after the time point l' can reasonably be regarded as steady. Unfortunately,
for structures with high values of the mechanical Q-factor (highquaiilv
resonant structures) such an approach is very inefticient and it c:m even
lead to incorrect resultsbecause ofavery large numberof integration steps
until the steady motion law is obtained. In some cases even the existence of
periodic motion corresponding to a given excitation law remains unclear. The
principal source ofrounding-off errors is an essential difference between the
magnitudes of conservative and dissipative terms in the equations of motion.
The inertia force Mii and the elastic force f,U predominate over the
drssiparive force cu, luiilrrlcul, lKulr,lcul,, u"t . ,trte dynamic
equilibrium condition implies the relation lMa + KUI=ICUI, resulting in
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poor accuracy of the computer arithmetics.
There are several approaches enabling to avoid or to reduce the difficul-

ties mentioned above, e.9., f1,2,31. As a rule, they can be applied directly to
structures with only several degrees offreedom. Regarding large structures,
some development is necessary. The analysis of steady motion laws in the
time domain can be carried out by finding the zero values of some algebraic
function obtained by integrating directly the equations of motion [4,5]. In the
frequency domain, nonlinear harmonic balance equations are obtained, and
the use ofthe averaging techniques enables to investigate transient motions
in terms of slow-varying amplitudes [,6,7]. In [7] a combined harmonic
balance and direct integration approach has been applied to structures with
local nonlinearities.

In this paper a formulation obtained by employing weighted residuals is
presented, the harmonic balance method being a special case of the
approach under consideration. Numerical examples present high-frequency
impact vibration laws of a vibroconverter attached to a rigid plane by means
of a constant loading force, and the results are compared with the motion laws
obtained by employing direct time integration techniques.

The weighted residual approach for obtaining Seadyvibration laws
Consider the matrix equation of motion of an elastic structure with

nonlinear interaction as (l) with the periodic excitation R(t):R(r+O. The
motion law U(t) of the structure during the vibration period is expressed by
superimposing a set of some l-periodic time functions as

U(t)= N(t)Un, Q)
where N(t) - the matrix containing time functions, and U,q - a constant
vector of the generalized nodal amplitudes. By substituting (2) into (l) and
by weighting the residual during the period the nonlinear equation is
expressed in terms of the generalized amplitudes Un:

T T

AIJA= jN'w(Nun,Nu)at* j l ' ,rtn1r;ar, (3)
0 0

T t T - . T . r \
where  A= I IN 'MN +N'CN +N'KN )d t  .

0

Nonlinear algebraic equation (3) can be derived by employing simple
iteration as well as the Newton-Raphson iteration scheme, the latter being
presented as

dit = rln * 4'(Rn - AuA* R"),
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where

+ = n-i*' ##l,u a, -i x' ffi* a,,
n* =j N' fNdn,x rln)dt, n, = Jttn14ar,

(s)

0

and the notation I means "obtained by substituting the values NUn, NUn"

Application to uniloterally con drqin ed dr u dures

Consider a linear structural equ:ltion of motion with unilateral con-

straints

Iuti+cu+xu =Rk),
IPU<d. 

'rv'" (6)

Substituting relation (2) into (6) and weighting the residual, we obtain

{4Y.t.=R* (7)
IPNU<d.

Th. const.uints of set (7) are to be satisfied at each time point during the

vibration period. By inroducing the Lagrange multiplier vector {t)>q , the

following set of equations is obtained:
( T
t !

) l an+JN ie ' ) . d , t=R t ,
1  " ;  '  ( 8 )
lrNan=4

where ltl={!)^,?teach time point l' where X{t)>0'
'1- / 

[0, if the reverse is truc .

The physical meaning of the conjugate variables ,(t) is expressed in

terms of normal force exerted by constraints upon a structure. According to

relation (2), the time law t{l) is approximated by a sum of z-periodic

functions in the time interval [O,?ni:
x"=Nt . (e)

Replacing the constraint PNIJ^=4 at each time p'oint of the interval

t0,4 by the projections of this constraint upon the subspace of the same

functions, the superposition of which leads to the approximation of the time

law l. we obtain

(10)

25

jrd r*o,on=Jr.o'ao,
0 0

(4)
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Taking account of(10), set (8) is presented as
( T

)AUn+B 'A=Rn,
lBUn=P'

where

( l  l )

T T
f  ^ r  f  ^ r

B = l N ' P N d t ,  D = l N ' d d , t .
J J
0 0

From the system (l l), /t can be expressed as follows:
I  r  - \ - l l  '  \

A = \ B A - ' B ' )  I B A - ' R A - D ) .  ( 1 2 )

If the time law ).(t) is approximated by relation (9), it may occur that at
some time points ,l < 0, and it can cause negative normal interaction forces.
In order to exclude negative values of ), , the conesponding constraints
should be regarded as being inactive. Therefore, we consider the rows of the
constraint matrix as the time function P = \t) and define them as zero
values at the time points when the corresponding negative elements of the
vector 1" are obtained from relation (9). In general, iteration is necessary for
determining the active and inactive constraints.

When the values of X,(1 are known, the generalized amplitude vector is
determined by the relation

un=A- t (nn-n 'a )

(14)

Analysis in the frequency domain employing the harmonic balance tech-
niques may be considered as a special case of the weighted residual
approach. The harmonic functions are employed as weighting functions
ru(r),ru(r)

f l(r)=l l  lcosat Isinat
i0'1r; = 

fi i 
"otrt 

i sinatt

where .f - the unity matrix of the dimension equal to the length of the vector
U , I - the unity matrix of the dimension equal to the number of constraints,
i.e., to the number of rows of the matrix P, and T =2tla. The generalized
amplitude vector consists of the sine and cosine Fourier amplitudes

l o r r 1 1 \ T
U n = \U" ,U) ,U: ,a : ,a : , . . . )

The f;nite element approach in time domain is obtained by dividing the
interval [0,7] into nr finite elements, each of the length Tfm. When
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employing the second order elements with three nodes, the generalized

amplitude vector on the i-th element is presented as

(r = Nrrie=[/rvo, rNt,rN2r[?;'.l, (r5)
\ur,*t )

- . . L^_^  t f - l )  r ,  t  E  , \ / r ,  r \  ^ ,  _€ (€+ t )  
"_  

twhere N.=}-] , , \=-(6- l)( f  +r) ,  Nr= ,- ,5-T 
.

During each iteration the matrices for the whole time interval [0,I] are

obtained according to the general rules for assembling finite element matrices,

taking into account the periodic motion condition as Ur=Un*r. The global

generalized amplitude vector is

I l  n  =  ( I l  r ,  I J2 ,  (J  3 ,  . . . ,u  r , ) t  .

Transient anolysis of nonlinear vibrqlion in terms of slow vorying
amplitudes

Consider the matrix equation of motion of an elastic structure with

nonlinear interaction (l) with the periodic excitation n(r)=n(r+f)' we

present the displacements and forces as truncated Fourier series as
p

uQ)=luj "o'(t 
-r)at +uj sin(r -t)at .

k= l

P

R(r)= Z^! "os(/. 
- t)at + R! sin(r - t)arr ,

k = l

P

wk) =L*! co.(/. - l)c'tt +w! sin(t - t)ax ,
k= l

where according to the definition ul = nl =n') =0,, and a=ZrlT. Em'
ploying the time averaging techniques, we consider the amplitudes
a!, U! ,k =lp as time functions. After some transformation we obtain
the equation of motion in terms of amplitudes slowly varying in time:

27

(13)
(16)

Icos2at Isin2ot ...1r,
1

I cos2aot I sin2a; ...1-
r

0
2atM 0

0 ZaM

a:
a:
u:

a:
a:

2(p-r)oi l  0
o z(p-r )aM
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(17) as

s = -Ku! +ri! + n! .
where 4 = ff + ma\lr, l, , *! = tir! +**lru luj, *itrt
matrix i?- i ' j  t  ' t  i , j  t  "

-otC K-azM
-K+a2M -ac

(17) '

the nonsingular

- (p-r)ac
-x  +a2(p- t )2  * t

x -a tz (p - t ) z  u
- (p-r )ot

Stabilfu analysis of the vibrdion lons

The steady motion laws are always stable when obtained by numerically
integrating the equations of motion until transient vibrations cease. However,
some unstable laws can appear among the motion laws obtained by employ-
ing the weighted residual approach. The stability of the motion law is to be
checked by linearizing the nonlinear equation at the solution point and by
applying well known transfer matrices or Hill's determinant techniques, or it
is possible to investigate the stability of the motion laws by employing time-
averaged equations. In the latter case the linearized equation forchecking if
the solution Ul is stable is obtained as

(18)

where the left-hand side matrix of equation (17) is denoted by B. To investi-
gate stability it is suffrcient to waluate the signs of the roots of the character-
istic equation of obtained from the differential equation (18), employing the
Routh-Hurwitz criterion.

Eiernally excited impad vibration of a rod-typevibroconverter loaded
by a longiludinalforce

A rod-type vibroconverter (VC) presented in Fig.l isemployed in
vibrodrives for creating a varylng normal interaction force. A VC of the length
/ is presented by a finite element model, the loading force being Po and
a longitudinal harmonic excitation force is 4 (r)= Prsinat. The computed

R:
-Rl

4
_R:

R:

W:
-W:

*:

-w:
W:

a:
U:
a)

a:
a:

(17)

The matrices in equation (17) are block-diagonal. With no nonlinearities
present (ll =0), equation (17) decomposes into /c independent equations,
each of which enables to obtain the corresponding Fourier amplitudes. If
nonlinearities are present, it is necessary to solve equation (17) of the
dimension 2( p - r)n x 2(p - l).

Ifnonlinear interaction forces are concentrated in the localized points
or zones of the structure, the vectors and matrices can be presented in
a block form, where blocks correspond to the linear and nonlinear parts
of the structure. The matrix inverse and other block operations correspond-
ing to the linear part of the structure are carried out during an initial
operation. As a result, during each iteration the nonlinear matrix equation of
the dimension 2(p-l)nrx2(p-l)n, is to be considered, where n -is the
number of the nonlinear degrees of freedom.

Ifthe simple iteration scheme for solving the nonlinearequation at each
numerical integration step doesn't converge, the Newton-Raphson iteration is
necessary. In this case at eachiteration the derivative matrix aWAf aAA
is to be determined.

In the case of ill-conditioned stffiess matrix, i.e., if rigid body motions
ofthe structure are possible, set (17) cannot be solved, because it is necessary
to invert the matrix K at the very first iteration. As a way out from this
situation, the equivalent transformation ofthe matrix Kand of the nonlinear
term W can be accomplished by presenting the left upper block of equation

w
0

qc) q(t)

Fig.l. Finite element model of a vibroconverter.
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results are presented by emplolng the dimensionless quantities
l r l

/  \ -
, , {  E ) ,  n  u  n  , . , (  p \ i  ;  k  =  P  I o \ it = - l  - l  ,  U  = - ,  U  =U l : - l - ,  k - - ,  P= - ,  @=a4 : - l

t \ p )  t  \E )  E t  EF  \E )
where E, p are the Young's modulus and the density of the material. The
dimensionless impetus of normal contact interaction forces is obtained from
the relation

I

-  s  (p \ i
o = - l  _ l

EFI\ E )
A mechanical Q-factor of the VC is assumed to be equal to fi-fty, i.e., Q=50.

Fig.2 and Fig.3 present the time laws of the right-hand end displacements
of the VC obtained by means of direct numerical integration of the equations

ol,ol
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ol,4

03,o:
0l,ul

Fig.3. Transient impact vibration of a rod-type VC, NEL:10, fo = f, =t, 6=1.02
(excitation during 90 periods, free vibration afterwards):

a )  + -un ;  x -S ;  c )  + -u ! ; r -U t ;Q -uz ;D -p t ;  - p ' ;

b )  + -u ! ;  r - ( J t  , 0 -p ' ' ,  a1  + -u l  ;  * -u t ;Q-u2 ' ,D -u3  '

91

2.e
1 . 5
t . ,
9 .5
g . g

q

1 . 5
t . 5

Fig.2 Transient impact vibration of a rod-type Vibroconverter (VC), NEL=\,
F, = P, =1, 6 = 1.02(excitation during 9o periods, free vibration afterwarcls):

/  t  \ ?  ,  . r \ j

* -  u: . ,  -(Jt =[ (r))" *(u] ) '  l ' ,  0 - r '  = r. . tg(ul /ul  ) ,"  \ '  " "  " '  )

- t

- l

ttrTEFFgrh|
r  rF6s5lr

tffiffiEn*f
i  i r y r - p - H

t . t
t . 2
l . a
l . l
t . l

@T
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03,ol,
03.oi

Fig.4. Transicnt impact vibration of a rod-type vc at several values of the excitation
frequency, NEL:IO, Po = P, =1, (*-U"0 ., x-Ut ;0-U2; fl-U3)

a) a =0.99; b) cD = t.Ol; c) d= 1.03; d) ar = 1.05
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of motion, and the time laws of Fourier component amplitudes obtained by
means of numerical integration of the time-averaged equations. The excita-
tion frequency is assumed to be resonant, i.e., d=1.02, the number of
elements being equal to I (two-mass structure, Fig.2) and to l0 (Fig.3). In
the case of the two-mass structure the time-averaging approach enables to
obtain satisfactory results taking into account only two Fourier components
(p=2).However, it is not the case for the structure with ll d.o.f. for a
satisfactory representation of a motion law at least four Fourier components
are to be taken into account (p : 4),Fig.3d. Fig. 2a presents direct integration
of equations of motion, time laws of the contact point displacements and
normal contact force impetus, obtained by employing 2400 integration points.
The time laws in terms of slowly varying amplitudes of in Fig.2b are obtained
by the numerical integration of time-averaged equations of motion taking
into account two Fourier components, p=2, 75 integtation points, and
presents time laws of the contact point vibration amplitudes and phases.

The transient motion time laws in terms of slow varying amplitudes
obtained by employing time-averaging techniques are presented in Fig.4

ep3
t 5

t2

9

6

3

0

/A.

/ J,'_'l7 t
\

I ltYf\\

/ /\ k\
l ti 

"t)t ' K
J 3 '

-l'1

0 . 5

-0 .  25

- 1 .

-  1 . 7 5

- 2 . 5

- 3 . 2 5

s . 9 7  0 . 9 6  1 . 1 . 0 {  . .

Fig.5. AFCH and PFCH of the rod-type VC contact point, P, = l:
I -unconstrained vibration;

2 -Fo=1,  p =2,  [ -= 10,  NEL =10;

3 -P;  = 1.5,  p=2,  F = lO,  NEL =10;

4  - F o = 1 ,  p = 2 ,  F = 1 0 ,  N E L = l ;

- amplitu de Ut ; - - - - amplitu de U0 ,..................ph"o gl

ffiml

of.
oi.
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taking into account four Fourier components. In Fig. 5 the AFCH and PFCH
are presented by several values of the load P. As a distinctive feature a
resonant frequency shift to the right in comparison with the resonant
frequency of an unconstrained VC and different steepness of slopes of the
AFCH is observed. Curves 1 and 4 show the difference obtained in the case
of onerlement and ten element stnrcfures.

Conclusions

1. For the analysis of the steady motion law of structural equations with
nonlinear terms with unilateral consEaints uponthe diqplacements the weighted
residual approach has been employed, and the well-known harmonic balance
method can be regarded as a special case. Motion laws in terms of the slow
varying amplitudes have been obtained by means of the time aveftrgtng
techniques. When integrating the averaged equations numerically, har-
monic components are obtained at each time station by means of Fourier
transformation.

2. The study of longitudinal impactvibrations of a rod-typevibroconverter
shows that the solution of time-averaged equations by considering two
Fourier components leads to satisfactory results only in the case of a two-
mass elastic qystem. For obtaining reliable results when considering strucnual
models, at least four Fourier components are to be taken into account.
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